Managerial Accounting 7th 김용석 CPA/CFA

Task-Based Simulation Solutions

2020

Chapter 1. Managerial accounting

[Problem 1]

DM issue $=39+82-9=112 \quad \mathrm{MOH}=6+25+8+17+3+5=64$
$\mathrm{CGM}=15+112+41+64-7=225 \quad$ CGS $=43+225-19=249$

Income Statement			CGM schedule
Sales revenue	354	BWIP	15
COGS	249	DM	112
Gross profit	105	DL	41
S\&A expenses	91	MOH	64
Operating income	14	EWIP	(7)
		CGM	225

[Problem 2]

1. $105+365-385=85$
2. $450-265=185$
3. $1610-385-450=775$
4. $230+1610-1660=180$
5. $130+1660=1790$
6. $130+1660-1770=20$
[Problem 3]

Chapter 2. Job order costing

[Problem 1]

[Problem 2]
Instruction (1)
(a) $\$ 50$
(b) $\$ 47$

Instruction (2)
(a) AA : $\$ 188,926$

AB : $\$ 221,720$
(b) AA : $\$ 186,166$

AB : \$218,600

[Problem 3]

Instruction (1)
Instruction (2) $\$ 52$ millions
Instruction (3) \$Actual $\mathrm{MOH}=94$. Applied $\mathrm{MOH}=93$, Under applied $=1$, CGS $=295$

[Problem 4]

Instruction (1) \$65
Instruction (2) \$55
Instruction (3) (1) $\$ 14,400 \quad$ (2) $\$ 19,200$

TBS-2

[Problem 5]

Instruction (1)
Rate-MD $=\$ 9,065,000 \div 185,000=49 \quad$ Rate-FD $=\$ 8,181,000 \div \$ 4,050,000=2.02$
Applied MOH-Job $431=140 \times 49+1,250 \times 2.02=\$ 9,385$
Job $431=\$ 13,000+5,000+900+1,250+9,385=\$ 29,535 \quad U C=29,535 \div 300=\underline{\$ 98.45}$
Instruction (2)
Applied MD $=200,000 \times 49=\$ 9,800,000 \rightarrow 9,900,000-9,800,000=\underline{100,000(U)}$
Applied FD $=4,100,000 \times 2.02=8,282,000-8,200,000-8,282,000=(-) 82,000(\mathrm{O})$
Under applied as a whole $=100,000-82,000=+18,000(\mathrm{U})$

[Problem 6]

```
Instruction (1) Predetermined OH rate = 70,000 \div2,000 = $35
Instruction (2)
<a> Applied MOH = $35 \times 1,900 = $66,500 <b> Applied MOH =$35 \times 2,000 = $70,000
<c> Applied MOH =$35 \times 2,100=$73,500 <d> Applied MOH =$35 \times 2,000 = $70,000
Instruction (3)
<a> 66,500-70,000 = -3,500 (under-applied) <b> 70,000-65,000 = +5,000 (over-applied)
<c> 73,500-70,000 = +3,500 (over-applied) <d > 70,000-75,000 = - 5,000 (under-applied)
```


[Problem 7]

$2,500=$ Over-applied $\times 1 / 8 \rightarrow$ Over-applied $=20,000$
Applied $\mathrm{MOH}=20,000+180,000=200,000=1,250$ 시간 x OH rate $\rightarrow \mathrm{OH}$ rate $=\underline{160}$

[Problem 8]

Instruction (1)
GOV $=8,756,000+600,000 \times 40 / 75+2,400,000 \times 30 / 90=\$ 9,876,000$
$\operatorname{COR}=12,452,000+600,000 \times 35 / 75+2,400,000 \times 60 / 90=\$ 14,332,000$
Instruction (2)
GOV $=8,756,000+600,000 \times 40 \%+(2,400,000+600,000 \times 25 \%) \times 30 / 90=\$ 9,846,000$
COR $=12,452,000+600,000 \times 35 \%+(2,400,000+600,000 \times 25 \%) \times 60 / 90=\$ 14,362,000$ Instruction (3)

GOV $=8,756,000+(600,000+2,400,000 \times 10 \%) \times 40 / 75+2,400,000 \times 30 \%=\$ 9,924,000$
COR $=12,452,000+(600,000+2,400,000 \times 10 \%) \times 35 / 75+2,400,000 \times 60 \%=\$ 14,284,000$
Instruction (4)
AS $=600,000+$ IS x $0.10, \mathrm{IS}=2,400,000+$ AS x $0.25, \mathrm{AS}=861,538 \quad \mathrm{IS}=2,615,385$
GOV $=8,756,000+861,538 \times 40 \%+2,615,385 \times 30 \%=\$ 9,885,230$
COR $=12,452,000+861,538 \times 35 \%+2,615,385 \times 60 \%=\$ 14,322,770$

Chapter 3. Process costing

[Problem 1]

NS $=1400 \times 15 \%=210$ units aNS $=400-210=190$ units

	Units	$\%$	DM	Con
CGM	1400	100	1400	1400
Normal	210	100	210	210
Abnormal	190	100	190	190
EWIP	300	40	300	120
Total	2100		2100	1920
Total cost			$\$ 441,000$	$\$ 163,200$
Unit cost			$\$ 210$	$\$ 85$

<First Allocation>

$$
C G M=1400 \times \$ 210+1400 \times \$ 85=\$ 413,000
$$

Normal spoilage $=210 \times \$ 210+210 \times \$ 85=\$ 61,950$
Abnormal spoilage $=190 \times \$ 210+190 \times \$ 85=\$ 56,050$
EWIP $=300 \times \$ 210+120 \times \$ 85=\$ 73,200$
$<$ Second Allocation>

$$
\mathrm{CGM}=413,000+61,950=\$ 474,950 \quad \mathrm{EWIP}=\$ 73,200
$$

[Problem 2]
$\mathrm{NS}=70,000 \times 10 \%=7,000$ units $\mathrm{mNS}=10,000-7,000=3,000$ units

	Units	$\%$	T-in	DM	Con
CGM	50,000	100	50,000	50,000	50,000
Normal	7,000	80	7,000	0	5,600
Abnormal	3,000	80	3,000	0	2,400
EWIP	20,000	95	20,000	20,000	19,000
Total	80,000		80,000	70,000	77,000
Total cost			$\$ 730,400$	655,200	$1,293,600$
Unit cost			$\$ 9.13$	9.36	16.8

<First Allocation>
CGM $=50,000 \times(9.13+9.36+16.8)=\$ 1,764,500$
Normal spoilage $=7,000 \times 9.13+5,600 \times 16.8=157,990$
Abnormal spoilage $=3,000 \times 9.13+2,400 \times 16.8=67,710$
EWIP $=20,000 \times 9.13+20,000 \times 9.36+19,000 \times 16.8=689,000$
<Second Allocation>
CGM $=\$ 1,764,500+157,990 \times 50,000 / 70,000=\$ 1,877,350$
EWIP $=689,000+157,990 \times 20,000 / 70,000=\$ 734,140$

[Problem 3]

NS $=50,000 \times 10 \%=5,000$ units m" ANS $=10,000-5,000=5,000$ units

	Units	$\%$	T-in	DM	Con
CGM	50,000	100	50,000	50,000	50,000
Normal	5,000	80	5,000	0	4,000
Abnormal	5,000	80	5,000	0	4,000
EWIP	20,000	50	20,000	0	10,000
Total	80,000		80,000	50,000	68,000
Total cost			$\$ 730,400$	655,200	$1,293,600$
Unit cost			$\$ 9.13$	13.104	19.024

<First Allocation>
CGM $=50,000 \times(9.13+13.104+19.024)=\$ 2,062,900$
Normal spoilage $=5,000 \times 9.13+4,000 \times 19.024=121,746$
Abnormal spoilage $=5,000 \times 9.13+4,000 \times 19.024=121,746$
EWIP $=2,679,200-(2,062,900+121,746+121,746)=372,808$
<Second Allocation>
$\mathrm{CGM}=\$ 2,062,900+121,746=\$ 2,184,646 \quad$ EWIP $=\$ 372,808$

[Problem 4]

Instruction (1)

	Units	$\%$	T-in	DM	Con
CGM	10,500	100	10,500	10,500	10,500
EWIP	2,000	50	2,000	0	1,000
Total	12,500		12,500	10,500	11,500
Total cost	$\$ 800,525$		$\$ 500,000$	110,775	189,750
Unit cost			$\$ 40$	10.55	16.5

$\mathrm{CGM}=10,500 \times(40+10.55+16.5)=\$ 704,025$
EWIP $=2,000 \times 40+1,000 \times 16.5=\$ 96,500$
Instruction (2)

	Units	$\%$	T-in	DM	Con
CGM	10,500	100	8,000	10,500	9,875
EWIP	2,000	50	2,000	0	1,000
Total	12,500		10,000	10,500	10,875
Total cost	$\$ 639,025$		$\$ 376,000$	110,775	152,250
Unit cost			$\$ 37.6$	10.55	14

CGM $=8,000 \times 37.6+10,500 \times 10.55+9,875 \times 14+115,680+37,500=\$ 703,005$
EWIP $=2,000 \times 37.6+1,000 \times 14=\$ 89,200$

[Problem 5]

	Units	$\%$	T-in	DM	Con
CGM	125,000	100	125,000	125,000	125,000
Normal	17,500	80	17,500	0	14,000
Abnormal	7,500	80	7,500	0	6,000
EWIP	50,000	95	50,000	50,000	47,500
Total	200,000		200,000	175,000	192,500
Total cost			$\$ 1,826,000$	$1,638,000$	$3,234,000$
Unit cost			$\$ 9.13$	9.36	16.8

<First Allocation>

$$
\mathrm{CGM}=125,000 \times(9.13+9.36+16.8)=\$ 4,411,250
$$

Normal spoilage $=17,500 \times 9.13+14,000 \times 16.8=394,975$
Abnormal spoilage $=7,500 \times 9.13+6,000 \times 16.8=169,275$
EWIP $=50,000 \times 9.13+50,000 \times 9.36+47,500 \times 16.8=1,722,500$
<Second Allocation>

$$
\begin{aligned}
& \mathrm{CGM}=4,411,250+394,975 \times 125,000 / 175,000=\$ 4,693,375 \\
& \mathrm{EWIP}=1,722,500+394,975 \times 50,000 / 175,000=\$ 1,835,350
\end{aligned}
$$

[Problem 6]

BWIP DM EUP $=78,000-66,000=12,000$
BWIP Conversion EUP $=54,400-52,000=2,400$
$12,000 \times \%=2,400 \rightarrow \%=\underline{20 \%}$

[Problem 7]

FIFO DM EUP $=30,500-1,000+500=30,000$
FIFO Conversion EUP $=30,500-1,000 \times 0.4+500 \times 0.8=30,500$
DM cost per $\mathrm{EUP}=240,000 \div 30,000=@ 8$
Conversion cost per EUP $=305,000 \div 30,500=@ 10$
$\mathrm{CGM}=21,000+29,500 \times @ 8+30,100 \times @ 10=\underline{558,000}$

[Problem 8]

FIFO DM EUP $=9,500-600-400+200+300=9,000$
FIFO Conversion EUP $=9,500-600 \times 1 / 3-400 \times 1 / 2+200 \times 0.4+300 \times 0.7=9,390$
DM cost per EUP $=135,000 \div 9,000=@ 15$
Conversion cost per EUP $=281,700 \div 9,390=@ 30$
EWIP $=500 \times @ 15+290 \times @ 30=\underline{16,200}$

Chapter 4. ABC

[Problem 1] In class

[Problem 2]

Instruction (1) In class
Instruction (2)
$\mathrm{HT}=\$ 820,000 \div 40,000 \mathrm{H}=\underline{\$ 20.50} \quad \mathrm{ST}=\$ 370,000 \div 30,000 \mathrm{H}=\$ 12.33$

[Problem 3]

Instruction (1)
Indirect costs $=\$ 190,000+90,000+50,000+120,000+16,000=\$ 466,000$
Interior unit cost $=\$ 60+\$ 32 \times 1.50 \mathrm{H}+\$ 466,000 \times 5,500 / 10,000 \div 3200$ units $=\$ 188.1$
Exterior unit cost $=\$ 90+\$ 32 \times 2.25 \mathrm{H}+\$ 466,000 \times 4,500 / 10,000 \div 1800$ units $=\underline{\$ 278.5}$

Instruction (2)
Interior unit cost $=\$ 60+\$ 32 \times 1.50 \mathrm{H}+\{\$ 190,000 \times 40 / 125+\$ 90,000 \times 72 / 240$ $+\$ 50,000 \times 45 / 200+\$ 120,000 \times 5,500 / 10,000+\$ 16,000 \times 250 / 400\} \div 3200$ units $=\$ 162.7$
Exterior unit cost $=\$ 90+\$ 32 \times 2.25 H+\{\$ 190,000 \times 85 / 125+\$ 90,000 \times 168 / 240$
$+\$ 50,000 \times 155 / 200+\$ 120,000 \times 4,500 / 10,000+\$ 16,000 \times 150 / 400\} \div 1800$ units $=\$ 323.6$

[Problem 4]

$1-\mathrm{D}, 2-\mathrm{E}, 3-\mathrm{C}, 4-\mathrm{B}, 5-\mathrm{A}$

[Problem 5]

기계가동 $=84,000 \div 5,000$ 시간 $=@ 16.8$ (기계시간당)
엔지니어링 $=60,000 \div 1,200$ 시간 $=@ 50$ (작업시간당)
품질검사 $=41,000 \div 25$ 회 $=@ 1,640$ (품 질검사횟수당)
제품 A 의 applied $\mathrm{MOH}=2,000$ 시간 $\times 16.8+500$ 시간 $\times 50+10$ 회 $\times 1,640=75,000$

[Problem 6]

전통 applied $\mathrm{MOH}=8$ 시간 $\times 150,000 \div 50$ 대 $=\underline{24,000}$
활동 applied $\mathrm{MOH}=(1,000$ 개 $\times 1,000+8$ 시간 $\times 40,000+15$ 분 $\times 10,000) \div 50$ 대 $=\underline{29,400}$

Chapter 5. Joint costing

[Problem 1]

Instruction (1)
$\operatorname{NRV}(\mathrm{X})=200$ tons $\mathrm{x} \$ 1,200=\$ 240,000$
$\operatorname{NRV}(\mathrm{Y})=600$ tons $\times \$ 900=\$ 540,000$
$\operatorname{NRV}(Z)=700$ tons $\times \$ 600-200,000=\$ 220,000$
$\mathrm{JC}(\mathrm{X})=\$ 580,000 \times 240 / 1,000=\$ 139,200$
Inventory $(X)=139,200 \times 132 / 200=\underline{\$ 91,872} \operatorname{CGS}(X)=139,200 \times 68 / 200=\underline{\$ 47,328}$
$\mathrm{JC}(\mathrm{Y})=\$ 580,000 \times 540 / 1,000=\$ 313,200$
$\operatorname{Inventory}(\mathrm{Y})=313,200 \times 120 / 600=\underline{\$ 62,640} \operatorname{CGS}(\mathrm{Y})=313,200 \times 480 / 600=\underline{\$ 250,560}$
$\mathrm{JC}(\mathrm{Z})=\$ 580,000 \times 220 / 1,000=\$ 127,600$
Inventory $(Z)=327,600 \times 28 / 700=\underline{\$ 13,104} \operatorname{CGS}(Z)=327,600 \times 672 / 700=\underline{\$ 314,496}$

Instruction (2)
Sales $(X)=240,000, \quad$ Sales $(Y)=540,000$, Sales $(Z)=420,000$,
Sales $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})=\$ 1,200,000$, COGS $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})=580,000+200,000=\$ 780,000$
CGS percentage $=780 / 1,200=0.65$
$\mathrm{JC}(\mathrm{X})=240,000 \times 0.65=\$ 156,000$
$\operatorname{Inventory}(X)=156,000 \times 132 / 200=\$ 102,960 \quad \operatorname{CGS}(X)=156,000 \times 68 / 200=\$ 53,040$
$\mathrm{JC}(\mathrm{Y})=\$ 540,000 \times 0.65=\$ 351,000$
$\operatorname{Inventory}(\mathrm{Y})=351,000 \times 120 / 600=\underline{\$ 70,200} \operatorname{CGS}(\mathrm{Y})=351,000 \times 480 / 600=\underline{\$ 280,800}$
$\mathrm{JC}(\mathrm{Z})=\$ 420,000 \times 0.65-200,000=\$ 73,000$
Inventory $(Z)=273,000 \times 28 / 700=\underline{\$ 10,920} \operatorname{CGS}(Z)=273,000 \times 672 / 700=\underline{\$ 262,080}$

Instruction (3)
Same as Instruction (1)

```
Instruction (4)
Units (X+Y+Z) = 200 + 600+ 700 = 1500tons
JC(X) = $580,000 x 200/1500 = $77,333
Inventory(X) = 77,333 x 132/200 = $51,040 CGS (X) = 77,333 x 68/200 = $26,293
JC(Y) = $580,000 x 600/1500 = $232,000
Inventory(Y) = 232,000 x 120/600 = $46,400 CGS (Y) = 232,000 x 480/600 = $185,600
JC(Z) = $580,000 x 700/1500 = $270,667
Inventory(Z) = 470,667 x 28/700 = $18,827 CGS (Z) = 470,667 x 672/700 = $451,840
```


[Problem 2]

```
Instruction (1)
(1) Under the production method
\(\mathrm{NRV}(\) by product \()=8,500 \times \$ 10=\$ 85,000\)
\(\mathrm{JC}(\) by product \()=\$ 85,000\)
\(\mathrm{JC}(\) Potato chips \()=\$ 500,000-\$ 85,000=\$ 415,000\)
Sales(Potato chips) \(=42,640 \times \$ 16=\$ 682,240\)
CGS(Potato chips) \(=\$ 415,000 \times 42,640 / 52,000=\$ 340,300\)
\(\mathrm{GM}=682,240-340,300=\$ 341,940\)
(2) Under the sales method
\(\mathrm{JC}(\) by product \()=0\)
\(\mathrm{JC}(\) Potato chips \()=\$ 500,000-0=\$ 500,000\)
Sales \((\) Potato chips \()=42,640 \times \$ 16=\$ 682,240\)
\(\operatorname{CGS}(\) Potato chips \()=\$ 500,000 \times 42,640 / 52,000=\$ 410,000\)
\((-) \operatorname{CGS}(\) by product \()=6,500 \times \$ 10=\$ 65,000\)
\(\mathrm{GM}=682,240-(410,000-65,000)=\$ 337,240\)
Instruction (2)
(1) Under the production method
Inventory \((\) Potato chips) \(=\$ 415,000 \times 9,360 / 52,000=\$ 74,700\)
Inventory(by product) \(=\$ 85,000 \times 2,000 / 8,500=\$ 20,000\)
(2) Under the sales method
Inventory \((\) Potato chips \()=\$ 500,000 \times 9,360 / 52,000=\underline{\$ 90,000}\)
Inventory(by product) \(=\$ 0 \times 2,000 / 8,500=\$ 0\)
```


[fProblem 3]

Instruction (1)
$\operatorname{NRV}(\mathrm{A})=12,000$ pounds $\mathrm{x} \$ 12-\$ 27,000=\$ 117,000$
$\operatorname{NRV}(B)=65,000$ pounds $\mathrm{x} \$ 3=\$ 195,000$
$\operatorname{NRV}(\mathrm{C})=16,000$ pounds $\mathrm{x} \$ 6-\$ 12,000=\$ 84,000$
$\mathrm{JC}($ by product $)=\$ 84,000 \mathrm{JC}(\mathrm{A}+\mathrm{B})=180,000-84,000=\$ 96,000$
$\operatorname{NRV}(\mathrm{A}+\mathrm{B})=117,000+195,000=\$ 312,000$
$\mathrm{JC}(\mathrm{A})=\$ 96,000 \times \$ 117,000 / \$ 312,000=\$ 36,000$
$\mathrm{JC}(\mathrm{B})=\$ 96,000 \times \$ 195,000 / \$ 312,000=\$ 60,000$

Unit $\operatorname{cost}(\mathrm{A})=(\$ 36,000+\$ 27,000) \div 12,000$ pounds $=\underline{\$ 5.25}$
Unit $\operatorname{cost}(B)=\$ 60,000 \div 65,000$ pounds $=\$ 0.92$
Unit $\operatorname{cost}(C)=(\$ 84,000+\$ 12,000) \div 16,000$ pounds $=\underline{\$ 6}$

Instruction (2)
$\operatorname{NRV}(\mathrm{A}+\mathrm{B}+\mathrm{C})=117,000+195,000+\$ 84,000=\$ 396,000$
$\mathrm{JC}(\mathrm{A})=\$ 180,000 \times \$ 117,000 / \$ 396,000=\$ 53,182$
$\mathrm{JC}(\mathrm{B})=\$ 180,000 \times \$ 195,000 / \$ 396,000=\$ 88,636$
$\mathrm{JC}(\mathrm{C})=\$ 180,000 \times \$ 84,000 / \$ 396,000=\$ 38,182$

Unit $\operatorname{cost}(\mathrm{A})=(\$ 53,182+\$ 27,000) \div 12,000$ pounds $=\underline{\$ 6.68}$
Unit $\operatorname{cost}(B)=\$ 88,636 \div 65,000$ pounds $=\underline{\$ 1.36}$
Unit $\operatorname{cost}(C)=(\$ 38,182+\$ 12,000) \div 16,000$ pounds $=\underline{\$ 3.14}$

[Problem 4]

$\mathrm{JC}(\mathrm{B})=360,000 \times 280,000 / 800,000=126,000 \quad \mathrm{JC}(\mathrm{C})=360,000-180,000-126,000=54,000$
$\mathrm{GP}(\mathrm{C})=400$ 개 $\times 500-54,000-14,000=\underline{132,000}$

[Problem 5]

$\mathrm{JC}(\mathrm{Y})=80,000 \times 3 / 6=40,000$
$\mathrm{JC}(\mathrm{B})=150,000-80,000-40,000=\underline{30,000}$

Chapter 6

[Problem 1]

Instruction (1)
Identify customer needs Design of products and processes
Perform market research on competing brands num Marketing
Design a prototype of the Galaxy smartphone mesign of products and processes
Market the new design to cell phone companies
Manufacture the Galaxy smartphone
Process orders from cell phone companies m Distribution
Package the Galaxy smartphones
Deliver the Galaxy smartphones to the cell phone companies Distribution
Provide online assistance to cell phone users for use of the Galaxy smartphone me CS
Make design changes to the smartphone based on customer feedback ${ }^{m}=\mathrm{CS}$

Instruction (2)

Identify customer needs
Int Number of surveys returned and processed from competing smartphone users Perform market research on competing brands
nIIt Hours spent researching competing market brands
Design a prototype of the Galaxy smartphone
Engineering hours spent on initial product design
Market the new design to cell phone companies
Num Number of cell phone companies purchasing the Galaxy smartphone
Manufacture the Galaxy smartphone
Im- Machine hours required to run the production equipment
Process orders from cell phone companies
Num Number of smartphone orders processed
Package the Galaxy smartphones
um Number of smartphones shipped by Galaxy
Deliver the Galaxy smartphones to the cell phone companies
nut Number of deliveries made to cell phone companies
Provide online assistance to cell phone users for use of the Galaxy smartphone
Int Customer-service hours
Make design changes to the smartphone based on customer feedback
num Number of design changes

Chapter 7

[Problem 1]

Instruction (1)
UVC $=1,500+125 \times 5+700=\$ 2,825$
TFC $=(1,200,000+1,800,000) / 12+74,500=\$ 324,500$
Instruction (2)
$\mathrm{UC}=2,825+(250,000+50,000) / 100=\$ 5,825$
$\mathrm{UC}=2,825+(250,000+200,000) / 225=\underline{\$ 4,825}$

[Problem 2]

Instruction (1)
UVC $=(280,000-190,000) /(140,000-95,000)=2$
$190,000=95,000 \times 2+\mathrm{TFC} . \mathrm{T}+\mathrm{TFC}=0 \quad \mathrm{TC}=\$ 2 \times$ Machine hours +0
Instruction (2)
$\mathrm{TC}=\$ 2 \times 100,000+0=\$ 200,000$

Chapter 8

```
[Problem 1]
(Instruction 1)
UCM = 35-18.50 = 16.50
NI = (22,000 x 16.50-214,500) x (1- 0.4) = $89,100
(Instruction 2)
BEPQ = $214,500 \div16.50=\underline{13,000 units}
(Instruction 3)
NI}=(25,000\times16.50-214,500-16,500)\times(1-0.4)=$\underline{$108,900
(Instruction 4)
BEPQ = (214,500 + 16,500 ) \div16.50 = 14,000 units
BEPS = 14,000 x $35 = $490,000
(Instruction 5)
NI = (Q x 16.50-214,500-16,500) x (1-0.4) = $89,100 -> Q = 23,000
revenue = 23,000 x $35 = $805,000
(Instruction 6)
NI =(25,000 x 16.50-214,500-A) x (1-0.4)=$108,450 -> A = $17,259
```

[Problem 2]
Instruction (1)
$\mathrm{UCM}=30 \times 0.95-21=7.5 \rightarrow \mathrm{BEPQ}=1,500,000 / 7.5=200,000$
Instruction (2)
(1) $\mathrm{TIPQ}=(1,500,000+450,000) / 7.5=\underline{260,000}$
(2) TIPQ $=(1,500,000+450,000 \div 0.75) / 7.5=\underline{280,000}$

Instruction (3)
(1) $\mathrm{UCM}=7.5 \times 1.1=8.25 \rightarrow \mathrm{TIPQ}=(1,500,000+450,000 \div 0.75) / 8.25=\underline{254,545}$
(2) $\mathrm{UCM}=32.50 \times 0.95-21=9.875 \rightarrow$ TIPQ $=2,100,000 / 9.875=\underline{212,658}$
(3) $\mathrm{UCM}=30 \times 0.95-23=5.5$
\rightarrow TIPQ $=(1,200,000 \times 0.4+300,000+450,000 \div 0.75) / 5.5=\underline{250,909}$

[Problem 3]

Instruction (1)
$\mathrm{WACM}=(5 \times 24+4 \times 96+3 \times 48) / 168=\$ 3.86$
$\mathrm{BEPQ}=405,000 / 3.86=104,922$ units

Infftruction (2)
$C M=5 \times 24,000+4 \times 96,000+3 \times 48,000=\$ 648,000$
$O I=648,000-405,000=\$ 243,000$
Instruction (3)
$C M=5 \times 24,000+4 \times 48,000+3 \times 96,000=\$ 600,000$
OI $=600,000-405,000=\$ 195,000$
WACM $=(5 \times 24+4 \times 48+3 \times 96) / 168=\$ 3.57$
BEPQ $=405,000 / 3.57=113,445$ units
Instruction (3)
requirement 1

[Problem 4]

Instruction (1)
$\mathrm{UCM}=206-24=182 \quad \mathrm{BEPQ}=327,600 / 182=1,800$ units
$Q(S)=\$ 618,000 / 206=3,000$ units $M / S(Q)=3,000-1800=1,200$ units Instruction (2)
(1) $\mathrm{UCM}=224-24=200 \quad \mathrm{BEPQ}=327,600 / 200=1,638$ units $\mathrm{M} / \mathrm{S}(\%)=(3,000-1,638) / 3,000=45.4 \%$
(2) $Q(S)=3,000 \times 1.15=3,450$ units $\mathrm{M} / \mathrm{S}(\%)=(3,450-1,800) / 3,450=47.8 \%$
(3) $\mathrm{BEPQ}=(327,600 \times 1.05) /(182+2)=1,869$ $\mathrm{M} / \mathrm{S}(\%)=(3,000-1,869) / 3,000=37.7 \%$

[Problem 5]

Instruction (1)
TFC $=800+2 \times 160 \times 10+40,000 \times 0.5 \times 1.2 / 12=\underline{6,000}$
$\mathrm{UCM}=20-5=15 \rightarrow \mathrm{BEPQ}=6,000 / 15=\underline{400}$
Instruction (2)
$\mathrm{TIPQ}=(6,000+4,500) / 15=\underline{700}$
Instruction (3)
$\mathrm{TFC}=800+40,000 \times 0.5 \times 1.2 / 12=2,800$
$\mathrm{UCM}=20 \times 0.85-5=12 \rightarrow \mathrm{TIPQ}=(2,800+4,500) / 12=\underline{608.33}$

Instruction (4)
$\mathrm{TFC}=2 \times 160 \times 10+40,000 \times 0.5 \times 1.2 / 12=5,200$
$\mathrm{UCM}=20 \times 0.92-5=13.4$
$15 \mathrm{Q}+6,000=13.4 \mathrm{Q}+5,200 \rightarrow \mathrm{Q}=\underline{500}$

[Problem 6]

Instruction (1)
(a) $\mathrm{UCM}=1,000-400=600 \rightarrow \mathrm{BEPQ}=17,400 / 600=29$ units
(b) $\mathrm{BEPQ}=\underline{0}$ units

Instruction (2)
$600 \mathrm{Q}-17,400=400 \mathrm{Q} \rightarrow \mathrm{Q}=87$ units
Instruction (3)
(a) $\mathrm{DOL}=(87 \times 600) /(87 \times 600-17,400)=1.5$
(b) $\mathrm{DOL}=1$

[Problem 7]

$\mathrm{WACM}=50 \times 0.3+30 \times 0.7=36$ $\mathrm{BEPQ}=21,600 \div 36=600$ 개

제품 A 의 판매수량 $=600$ 개 $\times 0.3=180$ 개

[Problem 8]

1 월 매출액 $=(60,000 / 0.6+500,000) \div 0.4=1,500,000$
2 월 매출 액 $=(72,000 / 0.6+600,000) \div 0.4=1,800,000$
매출차이 $=1,800,000-1,500,000=300,000$

[Problem 9]

$\mathrm{BEPQ}=120,000,000 \div(50,000-10,000)=3,000$ 개
객실임대율 $=3,000$ 개 $\div(365$ 일 $\times 100$ 개 $)=8.21 \%$

[Problem 10]

OI $=(21,000-11,000) \times 40,000$ 개 $-280,000,000=120,000,000$
$120,000,000=(P-11,400) \times 40,000$ 개 $-300,000,000 \rightarrow P=21,900$

Chapter 9

[Problem 1]

Instruction (1)
(a) $\operatorname{OI}(J a n)=1,825 \times 1300-610,000=\$ 1,762,500$

OI(Feb) $=1,825 \times 1400-610,000=\$ 1,945,000$
OI(Mar) = 1,825 x $1425-610,000=\$ 1,990,625$
(b) FOH UC $=490,000 / 1400=\$ 350$

Unit cost $=950+350+725=2,025$
OI(Jan) $=1,475 \times 1300-120,000=\$ 1,797,500$
$\mathrm{OI}(\mathrm{Feb})=1,475 \times 1400-120,000=\$ 1,945,000$
$\mathrm{OI}($ Mar $)=1,475 \times 1425-120,000=\$ 1,981,875$
Instruction (2)
Difference(Jan) $=(100$ units -0$) \times 350=\$ 35,000$
Difference(Feb) $=(100$ units -100 units) $\times 350=\$ 0$
Difference(Mar) $=(75$ units -100 units $) \times 350=-\$ 8,750$

[Problem 2]

Instruction (1)
(a) $\operatorname{OI}(J a n)=1,825 \times 1300-610,000=\$ 1,762,500$
$\mathrm{OI}(\mathrm{Feb})=1,825 \times 1375-610,000=\$ 1,899,375$
$\mathrm{OI}($ Mar $)=1,825 \times 1455-610,000=\$ 2,045,375$
(b) FOH UC $=490,000 / 1400=\$ 350$

Unit cost $=950+350+725=2,025$
OI(Jan) $=1,475 \times 1300-120,000=\$ 1,797,500$
$\mathrm{OI}(\mathrm{Feb})=1,475 \times 1375-120,000-25 \times 350=\$ 1,899,375$
OI(Mar) $=1,475 \times 1455-120,000+30 \times 350=\$ 2,036,625$
Instruction (2)
Difference(Jan) = (100units - 0) x $350=\$ 35,000$
Difference(Feb) $=(100$ units -100 units $) \times 350=\$ 0$
Difference(Mar) $=(75$ units -100 units $) \times 350=-\$ 8,750$

[Problem 3]

(Instruction 1)
$\mathrm{UCM}=750-325-15=410$
$\mathrm{TFC}=280,000+112,000=392,000$
Operating Income under VC = 995 x 410-392,000 = \$15,950
(Instruction 2)
Inventory unit cost $=325+280,000 / 1,000=\$ 605$
OI under $\mathrm{AC}=995 \times(750-605-15)-112,000-100 \times 280=-\$ 10,650$
(Instruction 3)
Difference $=(900$ units -995 units) $\times 280=-\$ 26,600$
OI (AC) $-\mathrm{OI}(\mathrm{VC})=-10,650-15,950=-26,600$

[Problem 4]

20X1 FOH unit cost $=10 \times 50 \%=@ 5$
20X2 FOH unit cost $=20 X 2$ 년 단위당 $\mathrm{FOH}=12 \times 60 \%=@ 7.2$
$\mathrm{OI}(\mathrm{AC})-\mathrm{OI}(\mathrm{VC})=1,400$ 개 $\times 7.2-2,000$ 개 $\times 5=+840$ (전부원가가 더 크다)

[Problem 5]

FOH unit cost $=3,000,000 \div 20,000$ 개 $=@ 150$
$O I(A C)=6,000,000+1,000$ 개 $\times 150-2,000$ 개 $\times 150=\underline{5,850,000}$

Chapter 10

[Problem 1]

(1) $915,000 \times \$ 4,050=\$ 3,705,750,000$
(2) $915,000+70,000-115,000=870,000$ units
(3) $870,000 \times 2+72,000-55,000=1,757,000$ wheels

$$
1,757,000 \times \$ 180=\$ 316,260,000
$$

[Problem 2]

Instruction (1)
Thingone $=62,000 \times \$ 172=\$ 10,664,000$
Thingtwo $=46,000 \times \$ 264=\$ 12,144,000$
Instruction (2)
Thingone $=62,000+26,000-21,000=67,000$ units
Thingtwo $=46,000+14,000-13,000=47,000$ units
Instruction (3)
$D M(A)=67,000 \times 5+47,000 \times 6+40,000-37,000=620,000 \mathrm{lb}$.
$D M(B)=67,000 \times 3+47,000 \times 4+35,000-32,000=392,000 \mathrm{lb}$.
Instruction (4)
$D M(A)=620,000 \mathrm{lb} . \mathrm{x} \$ 11=\$ 6,820,000 \quad \mathrm{DM}(\mathrm{B})=392,000 \mathrm{lb} . \mathrm{x} \$ 6=\$ 2,352,000$
Instruction (5)
$67,000 \times 3 \times \$ 11+47,000 \times 4 \times \$ 14=\$ 4,843,000$
Instruction (6)
$(67,000 \times 3+47,000 \times 4) \times \$ 19=\$ 7,391,000$
Instruction (7)
Thingone $=26,000 \times(5 \times \$ 11+3 \times \$ 6+3 \mathrm{x} \$ 30)=\$ 4,238,000$
Thingtwo $=14,000 \times(6 \times \$ 11+4 \times \$ 6+4 \times \$ 33)=\$ 3,108,000$
Instruction (8)
Thingone $=62,000 \times(5 \times \$ 11+3 \times \$ 6+3 \times \$ 30)=\$ 10,106,000$
Thingtwo $=46,000 \times(6 \times \$ 11+4 \times \$ 6+4 \times \$ 33)=\$ 10,212,000$
Instruction (9)
GP(Thingone) $=10,664,000-10,106,000=\$ 558,000$
GP(Thingtwo) $=\$ 12,144,000-\$ 10,212,000=\$ 1,932,000$

[Problem 3]

Instruction (1)
Income Statement (4/1-4/30)
(1) Sales $=\$ 625,000$
(2) $\mathrm{COGS}=625,000 \times 40 \%=\$ 250,000$
(3) $\mathrm{GP}=(2)-(1)=\$ 375,000$
(4) $\mathrm{S} \& \mathrm{~A}-\mathrm{VC}=625,000 \times 10 \%=\$ 62,500$
(5) $\mathrm{S} \& A-\mathrm{FC}=2,640,000 \div 12=\$ 220,000$
(6) Operating Income $=(3)-(4)-(5)=\$ 92,500$

Instruction (2)

Balance Sheet (4/30)

(1) $A / R=700,000 \times 80 \% \times 25 \%+625,000 \times 80 \% \times 65 \%=\$ 465,000$
(2) Inventory $=720,000 \times 40 \% \times 30 \%=\$ 86,400$
(3) Prepaid expense $=180,000 \times 2 / 12+240,000 \times 2 / 12=\$ 70,000$
(4) $A / P=625,000 \times 40 \% \times 70 \%+720,000 \times 40 \% \times 30 \%=\$ 261,400$
(5) Accrued liability $=625,000 \times 10 \%=\$ 62,500$

Instruction (3)
Cash Flow Statement (4/1-4/30)
(1) Cash inflow from customers
$=650,000 \times 80 \% \times 25 \%+700,000 \times 80 \% \times 40 \%$
$+625,000 \times(20 \%+80 \% \times 30 \%)=\$ 629,000$
(2) Cash outflow to suppliers
$=700,000 \times 40 \% \times 70 \%+625,000 \times 40 \% \times 30 \%=\$ 271,000$
(3) Cash outflow-S\&A-VC $=700,000 \times 10 \%=\$ 70,000$
(4) Cash outflow-S\&A-FC
$=180,000 \times 3 / 12+240,000 \times 6 / 12+(720,000+1,080,000) \times 1 / 12=\$ 315,000$
(5) Cash flow from operation $=(1)-(2)-(3)-(4)=(\$ 27,000)$

[Problem 4]

(Instruction 1)
Cat : 530 x $205=\$ 108,650$
Dog : $225 \times 310=\$ 69,750$
Total Revenue $=108,650+69,750=\$ 178,400$

(Qastruction 2)

Cat : $530+30-10=550$ units
Dog : $225+10-25=210$ units
Total Production Units $=550+210=\underline{760 \text { units }}$
(Instruction 3)
Plastic : 550×4 pounds $+210 \times 6$ pounds $=3,460$ pounds
Metal : 550×0.5 pounds $+210 \times 1$ pound $=485$ pounds
Plastic Usage $=\$ 1,102+(3460-290) \times \$ 5=\$ 16,952$
Plastic Purchase $=(3460+410-290) \times \$ 5=\$ 17,900$
Metal Usage $=\$ 217+(485-70) \times \$ 4=\underline{\$ 1,877}$
Metal Purchase $=(485+65-70) \times \$ 4=\underline{\$ 1,920}$
(Instruction 4)
DL hours : $550 \times 3 \mathrm{H}+210 \times 5 \mathrm{H}=2,700$ hours
DL cost $=2700 \mathrm{H} \times \$ 10=\$ 27,000$
(Instruction 5)
Number of batch : Cat $=\frac{550}{25}=22 \quad$ Dog $=\frac{210}{9}=\frac{70}{3}=24$
MOH for Setup $=(22 \times 1.50 \mathrm{H}+24 \times 1.75 \mathrm{H}) \times \$ 105=\$ 7,875$
MOH for Processing $=(550 \times 11 \mathrm{H}+210 \times 19 \mathrm{H}) \times \$ 10=\$ 100,400$
MOH for Inspection $=(22 \times 0.50 \mathrm{H}+24 \times 0.7 \mathrm{H}) \times \$ 15=\$ 417$
(Instruction 6)
Unit cost of ending FG
Plastic Usage cost per unit $=\$ 16,952 \div 3460 \neq 4.899$
Metal Usage cost per unit $=\$ 1,877 \div 485=3.87$
CGM for Cat $=\$ 4.899 \times 2200$ pounds $+\$ 3.87 \times 275$ pounds $+550 \times 3 H \times \$ 10$

$$
+22 \times 1.5 \mathrm{H} \times \$ 105+550 \times 11 \mathrm{H} \times \$ 10+22 \times 0.5 \mathrm{H} \times 15=\$ 92,472
$$

CGM for Dog $=\$ 4.899 \times 1260$ pounds $+\$ 3.87 \times 210$ pounds $+210 \times 5 H \times \$ 10$

$$
+24 \times 1.75 \mathrm{H} \times \$ 105+210 \times 19 \mathrm{H} \times \$ 10+24 \times 0.7 \mathrm{H} \times 15=\$ 62,047
$$

Unit cost of ending FG
Cat $=92,472 \div 550=\underline{\$ 168.13}$
Dog $=62,047 \div 210=\$ 295.46$
(Instruction 7)
CGS for Cat $=\$ 1,000+(530-10) \times 168.13=\underline{\$ 88,428}$
CGS for $\operatorname{Dog}=\$ 4,650+(225-25) \times 295.46=\$ 63,742$
(Instruction 8)
Non-manufacturing costs $=178,400 \times 0.01+16,000+16,000 \times 1.05=\underline{\$ 50,640}$
(Instruction 9)
(1) Sales $=\$ 178,400$
(2) $\mathrm{CGS}=88,428+63,742=152,170$
(3) $\mathrm{GP}=(1)-(2)=\$ 26,230$
(4) $\mathrm{S} \mathrm{\& A}=50,640$
(5) Operating Income $=(3)-(4)=(-) 24,410$

[Problem 5]

Instruction (1)
\$13,573.5
Instruction (2)
Ordering $=(14+24+14) \times \$ 45=\$ 2,340$
Delivery $=(12+62+19) \times \$ 41=\$ 3,813$
Stocking $=(16+172+94) \mathrm{x} \$ 10.50=\$ 2,961$
Support $=(4,600+34,200+10,750) \times \$ 0.09=\$ 4,459.5$
Instruction (3)
soft drinks $=(14 \times \$ 45)+(12 \times \$ 41)+(16 \times \$ 10.50)+(4600 \times 0.09)=\$ 1,704$
snacks $=(24 \times \$ 45)+(62 \times \$ 41)+(172 \times \$ 10.50)+(34200 \times 0.09)=\$ 8,506$
packaged $=(14 \times \$ 45)+(19 \times \$ 41)+(94 \times \$ 10.50)+(10750 \times 0.09)=\$ 3,363.5$
Instruction (4)
fresh snacks

Ghapter 11

[Problem 1]

(Instruction 1)
$500,000 \times(\mathrm{P}-4)-2,500,000=180,000 \rightarrow \mathrm{P}=\$ 9.36$
(a) Sales $=9.36 \times 500,000=\$ 4,680,000$
(b) Selling price $=\$ 9.36$
(c) $\mathrm{ROI}=180,000 / 2,250,000=8 \%$
(d) Unit cost $=\$ 4+\$ 2.500,000 / 500,000=\$ 9$ Markup $=(\$ 9.36-\$ 9) / \$ 9=\underline{4 \%}$
(Instruction 2)
Unit cost $=\$ 4-\$ 0.30+\$ 2,275,000 / 500,000=\$ 8,25$
$\mathrm{P}=\$ 8.25 \times 1.04=\$ 8.58$
(Instruction 3)
Unit cost $=\$ 4-\$ 0.30+\$ 2,275,000 /(500,000 \times 0.95)=\$ 8,49$
$\mathrm{P}=\$ 8.49 \times 1.04=\underline{\$ 8.83}$
Operating Income $=(8.83-3.70) \times 500,000 \times 0.95-2,275,000=\underline{\$ 161,750}$

[Problem 2]

Instruction (1)
$15,000,000 \times 10 \%=\$ 1,500,000$
Instruction (2)
Unit cost $=5+\$ 900,000 / 300,000=\$ 8$
$\$ 1,500,000=(\mathrm{P}-\$ 5) \times 300,000-\$ 900,000 \rightarrow \mathrm{P}=\$ 13$
Mark-up $=(13-8) / 8=\underline{62.5 \%}$
Instruction (3)
OI $=(\$ 15-\$ 5) \times 300,000 \times 0.96-\$ 900,000=\$ 1,980,000$
ROI $=1,980000 / 15,000,000=\underline{13.2 \%}$

[Problem 3]

Instruction (1)
$\$ 65+(\$ 100-\$ 8-\$ 65)=\$ 92$
Instruction (2)
$\$ 100+\$ 7=\$ 107$
Instruction (3)
(1) $\$ 65+(\$ 100-\$ 8-\$ 65) \times 0.7=\$ 83.9$
(2) 20,000 screens

[Problem 4]

최소대체가격 $=1,800+150,000 \div 1,000$ 개 $=1,950$
최대대체가격 $=2,000$

[Problem 5]

Instruction (1)
(a) $\mathrm{OI}(\mathrm{US})=\underline{0}$
$\mathrm{OI}(\mathrm{G})=(575-400 \times 1.15) \times 100,000 \times(1-0.4)=\$ 6,900,000$
(b) OIUS $=(475-400) \times 100,000 \times(1-0.35)=\$ 4,875,000$
$\mathrm{OI}(\mathrm{G})=(575-475 \times 1.15) \times 100,000 \times(1-0.4)=\$ 1,725,000$
Instruction (2)
$(\mathrm{P}-400) \times 0.35+(575-\mathrm{P} \times 1.15) \times 0.4+\mathrm{P} \times 0.15=0.04 \mathrm{P}+90$ - \$400

Chapter 12

[Problem 1]

Incremental revenue $=190+10=200 \quad$ Incremental cost $=260$
Incremental profit $=-\$ 60$ ** reject

[Problem 2]

Incremental revenue $=5,000 \times \$ 6.25=\$ 31,250$
Incremental cost $=5,000 \times \$ 5=\$ 25,000 \quad$ Incremental profit $=+\$ 6,250$

[Problem 3]

Instruction (1)
Incremental revenue $=10,000 \times \$ 23=\$ 230,000$
Incremental cost $=10,000 \times \$ 20=\$ 200,000$ Incremental profit $=+\$ 30,000$
Instruction (2)
(1) Incremental revenue $=10,000 \times \$ 23=\$ 230,000$

Incremental cost $=10,000 \times(\$ 20+\$ 13)=\$ 330,000$
Incremental profit $=-\$ 100,000$
(2) $\$ 33$
(3) in class

[Problem 4]

Incremental revenue $=30,000 \times \$ 43+\mathrm{RC}$
Incremental cost $=30,000 \times \$ 47$
$\$ 30,000=30,000 \times(43-47)+\mathrm{RC} \mathrm{m}+\mathrm{RC}=\underline{\$ 150,000}$

[Problem 5]

Instruction (1)
Cola $=\$ 5$ Lemonade $=\$ 4.50$, Punch $=\$ 6.80$, Juice $=\$ 9.20$
Instruction (2)
Cola $=7 \times \$ 5=\$ 35$, Lemonade $=12 \times \$ 4.50=\$ 54$
Punch $=24 \times \$ 6.80=\$ 163.2$, Juice $=6 \times \$ 9.20=\$ 55.2$

[Problem 6]

Instruction (1) OI $=70,000-40,000+44,000=\$ 74,000$
Instruction (2) OI $=70,000-25,000+(15,000-4,000)=\$ 56,000$

[Problem 7]

Instruction (1)
(1) a partially automated B2B

```
300,000 m" Cost = 300,000 x 35 + 5,000,000 = $15,500,000
400,000 m* Cost = 400,000 x 35 + 5,000,000 = $19,000,000
500,000 m* Cost = 500,000 x 35 + 5,000,000 = $22,500,000
600,000 m" Cost = 600,000 x 35 + 5,000,000 = $26,000,000
700,000 m" Cost = 700,000 x 35 + 5,000,000 = $29,500,000
```

(2) a fully automated B2B

300,000 m" Cost $=300,000 \times 20+11,000,000=\$ 17,000,000$
400,000 m* Cost $=400,000 \times 20+11,000,000=\$ 19,000,000$
500,000 m m Cost $=500,000 \times 20+11,000,000=\$ 21,000,000$
600,000 m. Cost $=600,000 \times 20+11,000,000=\$ 23,000,000$
700,000 m Cost $=700,000 \times 20+11,000,000=\$ 25,000,000$
Instruction (2)
Expected orders $=485,000$
a partially automated B 2 B : Cost $=485,000 \times 35+5,000,000=\$ 21,975,000$
a fully automated B2B : Cost $=485,000 \times 20+11,000,000=\$ 20,700,000$

[Problem 8]

Instruction (1)
Excess capacity $=8000$ 시간 $\times 25 \% \times 2$ 개 $=4,000$ 개
단위당 변동원가 $=200+300+240 \times 0.5=620$
기회비용 $=(5,000$ 개 $-4,000$ 개 $) \times(1,000-620)=380,000$
Instruction (2)
증분수익 $=5,000$ 개 $\times 700=3,500,000$
증분비용 $=5,000$ 개 $\times 620+380,000=3,480,000 \mathrm{~m}$ 증분이익 $=20,000$

Chapter 13

[Problem 1]

Instruction (1)
WACM $=\$ 15,525 / 2,300=\$ 6.75$
Budgeted sales-mix percentage of Plan=w
$\$ 6.75$ = w x $\$ 5+(1-w)$ x $\$ 12$ wn+ w=75\%
Total actual quantity $=2,300+\$ 2,700 / 6.75=2.700$
Sales quantity variance of Plain $=(2700-2300) \times 75 \% \times \$ 5=+1,500$
Sales quantity variance of Chic $=(2700-2300) \times 25 \% \times \$ 12=+1,200$
Instruction (2)
Sales mix variance of Plain $=(60 \%-75 \%) \times 2700 \times \$ 5=-2,025$
Sales mix variance of Chic $=(40 \%-25 \%) \times 2700 \times \$ 12=+4,860$
Total sales mix variance $=-2,025+4,860=+2,835$
Instruction (3)
Sales volume variance of Plain $=-2,025+1,500=-525$
Sales volume variance of Chic $=4,860+1,200=6,060$
Total sales volume variance $=-525+6,060=+5,535$

[Problem 2]

Instruction (1)
Static budget OI $=15,000 \times(20-8)-145,000=\$ 35,000$
Actual OI $=12,000 \mathrm{x}(21-7)-150,000=\$ 18,000$
Static-Budget Variance $=18,000-35,000=-17,000(\mathrm{U})$
Instruction (2)
Flexible budget OI $=12,000 \times(20-8)-145,000=-1,000$
Flexible-Budget Variance $=18,000-(-1,000)=+19,000(F)$

[Problem 3]

Instruction (1)
static-budget variance in units $=350,000-335,000=15,000$ units (F)
static-budget variance in revenues $=2,012,500-1,976,500=+36,000(F)$
static-budget variance in variable manufacturing costs
$=1,137,500-1,038,500=+99,000(\mathrm{U})$
static-budget variance in contribution margin

$$
=875,000-938,000=-63,000(\mathrm{U})
$$

static-budget variance percentage relative to its static-budget amount
unit $=15,000 / 335,000=4.48 \%$
revenues $=35,500 / 1,976,500=1.80 \%$
variable manufacturing costs $=99,000 / 1,038,500=9.53 \%$
contribution margin $=63,000 / 938,000=6.72 \%$
Instruction (2)
(1) units
flexible-budget variance $=350,000-350,000=0$
sales-volume variance $=15,000-0=15,000(\mathrm{~F})$
(2) revenues
flexible-budget variance $=350,000 \mathrm{x}(5.75-5.9)=-52,500(\mathrm{U})$
sales-volume variance $=36,000-(-52,500)=88,500(\mathrm{~F})$
(3) variable manufacturing costs
flexible-budget variance $=350,000 \mathrm{x}(3.25-3.1)=+52,500(\mathrm{U})$
sales-volume variance $=99,000-52,500=46,500(\mathrm{U})$
(4) contribution margin
flexible-budget variance $=350,000 \mathrm{x}(2.5-2.8)=-105,000(\mathrm{U})$
sales-volume variance $=-63,000-(-105,000)=42,000(\mathrm{~F})$
Instruction (3)
selling-price variance $=350,000 \times(5.75-5.9)=-52,500(\mathrm{U})$

Chapter 14

[Problem 1]

Instruction (1)
DM price variance $=(5.10-5) \times 3700=\$ 370(U)$
DM efficiency variance $=5 \mathrm{x}(3700-4000)=\$ 1500(\mathrm{~F})$
DL price variance $=(9.80-10) \times 900=\$ 180(F)$
DL efficiency variance $=10 \times(900-1000)=\$ 1000(\mathrm{~F})$
Instruction (2)
DM price variance $=(5.10-5) \times 6000=\$ 600(U)$
DM efficiency variance $=5 \mathrm{x}(3700-4000)=\$ 1500(\mathrm{~F})$

[Problem 2]

DL price variance $=\$ 940,000-\$ 9 \times 94,000=\$ 94,000(\mathrm{U})$
DL efficiency variance $=\$ 9 \mathrm{x}(94,000-88,000)=\$ 54,000(\mathrm{U})$
VOH spending variance $=\$ 740,000-94,000 \times \$ 8=\$ 12,000(\mathrm{~F})$
VOH efficiency variance $=\$ 8 \times(94,000-88,000)=\$ 48,000(\mathrm{U})$
FOH spending variance $=\$ 540,000-\$ 500,000=\$ 40,000(\mathrm{U})$
FOH volume variance $=\$ 5 \mathrm{x}(100,000-88,000)=\$ 60,000(\mathrm{U})$

[Problem 3]

Instruction (1)
VOH spending variance $=\$ 680,400-50,400 \times \$ 10=\$ 180,000(U)$
VOH efficiency variance $=\$ 10 \times(50,400-56,000)=\$ 56,000(\mathrm{~F})$
VOH budget variance $=+180,000-56,000=\$ 124,000(\mathrm{U})$
Instruction (2)
FOH spending variance $=\$ 282,000-64,000 \times \$ 4=\$ 26,000(\mathrm{U})$
FOH volume variance $=\$ 4 \times(64,000-56,000)=\$ 32,000(\mathrm{~F})$

[Problem 4]

VOH spending variance $=\$ 618,840-76,400 \times \$ 8=\$ 7,640(\mathrm{U})$
VOH efficiency variance $=\$ 8 \mathrm{x}(76,400-78,600)=\$ 17,600(\mathrm{~F})$

FOH spending variance $=\$ 145,790-\$ 144,000=\$ 1,790(\mathrm{U})$
FOH volume variance $=\$ 2 \mathrm{x}(72,000-78,600)=\$ 13,200(\mathrm{~F})$

[Problem 5]

DM price variance $=(\$ 3.80-\$ 4) \times 40,300=\$ 8,060(\mathrm{~F})$
DM efficiency variance $=\$ 4 \mathrm{x}(37,300-38,000)=\$ 2,800(\mathrm{~F})$
DL price variance $=(\$ 16.25-\$ 16) \times 31,400=\$ 7,850(\mathrm{U})$
DL efficiency variance $=\$ 16 \mathrm{x}(31,400-30,400)=\$ 16,000(\mathrm{U})$
MOH spending variance $=\$ 650,000-31,400 \times \$ 8-37,000 \times \$ 9=\$ 65,800(U)$
VOH efficiency variance $=\$ 8 \mathrm{x}(31,400-30,400)=\$ 8,000(\mathrm{U})$
FOH volume variance $=\$ 9 \mathrm{x}(37,000-30,400)=\$ 59,400(\mathrm{U})$

Chapter 15

[Problem 1]

Instruction (1)
OI = (\$720-\$500) x 150,000-\$30,000,000 = \$3,000,000
ROI $=3,000,000 / 48,000,000=6.25 \%$
Instruction (2)
OI $=48,000,000 \times 25 \%=\$ 12,000,000$
$\$ 12,000,000=(P-\$ 500) \times 150,000-\$ 30,000,000 \Rightarrow P=\$ 780$

[Problem 2]

(Company A)
Income as a percentage of revenues $=150,000 / 500,000=30 \%$
Investment turnover $=500,000 / 250,000=2$
ROI $=30 \%$ x $2=60 \%$
(Company B)
Investment $=60,000 / 0.06=1,000,000$
Income as a percentage of revenues $=60,000 / 200,000=30 \%$
Investment turnover $=200,000 / 1,000,0000=0.2$
(Company C)
Revenues $=1,000,000 \times 2=\$ 2,000,000$
Operating income $=2,000,000 \times 3 \%=\$ 60,000$
ROI $=3 \% \times 2=6 \%$

[Problem 3]

WACC $=10 \% \times(1-0.4) \times 1 / 2+14 \% \times 1 / 2=10 \%$
$\operatorname{EVA}($ 남부 $)=250,000 \times(1-0.4)-(1,500,000 \times 10 \%)=0$
$\operatorname{EVA}($ 중부 $)=2,000,000 \times(1-0.4)-(7,000,000 \times 10 \%)=\$ 500,000$

[Problem 4]

Instruction (1)
ROI for New Car $=2,475,000 / 33,000,000=7.5 \%$
ROI for Performance Part $=2,565,000 / 28,500,000=9 \%$

Instruction (2)
RI for New Car $=2,475,000-(26,400,000 \times 12 \%)=(-) \$ 693,000$
RI for Performance Part= 2,565,000 - (20,100,000 x 12\%) = \$153,000
Instruction (3)
WACC $=10 \% \times(1-0.4) \times 18 / 30+15 \% \times 12 / 30=9.6 \%$
EVA for New Car $=2,475,000 \times(1-0.4)-(26,400,000 \times 9.6 \%)=(-) \$ 1,049,400$
EVA for Performance Part
$=2,565,000 \times(1-0.4)-(20,100,000 \times 9.6 \%)=(-) \$ 390,600$

[Problem 4]

Instruction (1)
$\mathrm{NI}=(200,000-600,000 \times 6.25 \%) \times(1-0.2)=\$ 130,000$
Instruction (2)
ROI $=200,000 / 1,250,000=16 \%$
Instruction (3)
RI $=200,000-1,250,000 \times 10 \%=\$ 75,00$
Instruction (4)
WACC $=6.25 \% \times(1-0.2) \times 6 / 14+12 \% \times 8 / 14=9 \%$
EVA $=200,000 \times(1-0.2)-(1,000,000 \times 9 \%)=\$ 70,000$

Chapter 16

[Problem 1]

Instruction (1)
appraisal cost $=200,000 \times \$ 5=\$ 1,000,000$
internal failure cost $=200,000 \times 5 \% \times \$ 1=\$ 10,000$
Instruction (2)
out-of-pocket external failure cost $=200,000 \times 1 \% \times \$ 9=\$ 18,000$
Instruction (3)
opportunity cost associated with the external failures
$=200,000 \times 1 \% \times \$ 100=\$ 200,000$
Instruction (4)
total costs of quality $=1,000,000+10,000+18,000+200,000=\$ 1,228,000$
Instruction (5)
appraisal cost $=200,000 \times \$ 3=\$ 600,000$
internal failure cost $=200,000 \times 3.5 \% \times \$ 1=\$ 7,000$
external failure cost $=200,000 \times 2,5 \% \times \$ 109=\$ 545,000$
total costs of quality $=600,000+7,000+545,000=\$ 1,152,000$

[Problem 2]

Instruction (1)
Incremental revenues $=315,000 \times 60 \%+787,500 \times 70 \%=740,250$
Incremental costs $=150,000+137,500=287,500$
Incremental profits $=+452,750$
Instruction (2)
<before the change in the production process>
(1) as a percentage of total quality costs
total quality costs $=210,000+100,000+441,000+1,102,500=1,853,500$
prevention costs $=210,000 / 1,853,500=11.3 \%$
appraisal costs $=100,000 / 1,853,500=5.4 \%$
internal failure costs $=441,000 / 1,853,500=23.8 \%$
external failure costs $=1,102,500 / 1,853,500=59.5 \%$
(2) as a percentage of sales
prevention costs $=210,000 / 10,500,000=2 \%$
appraisal costs $=100,000 / 10,500,000=1 \%$
internal failure costs $=441,000 / 10,500,000=4.2 \%$
external failure costs $=1,102,500 / 10,500,0000=10.5 \%$
<after the change in the production process>
(1) as a percentage of total quality costs
total quality costs $=497,500+100,000+441,000+362,250=1,400,750$
prevention costs $=497,500 / 1,400,750=35.5 \%$
appraisal costs $=100,000 / 1,400,750=7.1 \%$
internal failure costs $=441,000 / 1,400,750=31.5 \%$
external failure costs $=362,250 / 1,400,750=25.9 \%$
(2) as a percentage of sales
prevention costs $=497,500 / 10,500,000=4.7 \%$
appraisal costs $=100,000 / 10,500,000=1 \%$
internal failure costs $=441,000 / 10,500,000=4.2 \%$
external failure costs $=362,250 / 10,500,0000=3.5 \%$

[Problem 3]

prevention costs $=10+40+70+90=210$
appraisal costs $=60$
internal failure costs $=20$
external failure costs $=30+50+80=160$

